Namo:	Date:	Period:	NOTES
Name:	Date:	renou:	NOIES

Chemical Reactions Notes: The Law of Conservation of Mass

wnat nappens	• Chemical in the reactants are, then atoms are		
in a Chemical	to form new substances ().		
Reaction?	The amount of does not during a chemical reaction, the		
	are only rearranged to form substances.		
	This is evidenced () in a balanced chemical		
What is a	A chemical equation is a way that scientists a chemical		
Chemical	that has occurred. It shows the of atoms in a chemical reaction.		
	that has occurred. It shows the of atoms in a chemical reaction.		
Equation?	 It contains the chemical of the substances involved in the reaction. 		
	- An is used to distinguish between the reactants and,		
	and can be understood as meaning "" or "".		
	 are the substances broken apart or combined in a chemical 		
	reaction (what you with!) and they are located on the side		
	of the arrow in a chemical		
	are new substances formed in a chemical reaction (what you		
	with!) and they are located on the side of the arrow in a		
	chemical		
	$- \text{ Ex: } C + O_2 \rightarrow CO_2$		
	This equation says "carbon with oxygen to		
	(make) carbon dioxide."		
	of the reaction.		
TATIL at the Tana	• > can take place.		
What is the Law	When substances with each other) many can take place)		
of Conservation	but in every case the total amount of afterward is the as before.		
of Mass?	Discovered by Lavoisier — chemist		
	• <u>Law of Conservation of</u> : in a chemical rxn, () is neither		
	nor		
	- Mass of $=$ mass of products		
	 All present in the reactants are also present in the 		
	There must be the of atoms in the products and reactants.		
Mass Stays the	The of the products must be the as the mass of the		
SAME	You do not magically gain or lose mass!!!		
	Example: If you have grams of Na react with gram of Cl to make <u>NaCl</u> , you		
	know you must have grams of NaCl in the products!		
	- Na + Cl → NaCl		
Number of	$\underline{g} + \underline{g} \rightarrow \underline{g}$ • You must have the number of atoms of on both		
Atoms Stays the	sides of the equation.		
SAME	• If you have atoms of oxygen in the reactants, you must have atoms of oxygen		
	in the products. (You do not magically gain or lose atoms!!!)		
	• This is NOT something someone made up; it's how chemical reactions happen in		
	!		
How can I tell	Coefficient: the "" number written in of a chemical that tells you how many of that substance there are		
how many	that tells you how many of that substance there are.		
atoms of each	- Ex: $5 H_2O = $ molecules of water		
element there	- Draw:		
i e e e e e e e e e e e e e e e e e e e	- Diaw.		
are?			
are?	• The tells you how many of each element there are.		
are?	 The tells you how many of each element there are. The coefficient the subscript tells you how many of that 		
are?	 The tells you how many of each element there are. The coefficient the subscript tells you how many of that element are present. 		
are?	 The tells you how many of each element there are. The coefficient the subscript tells you how many of that 		

What does it	Sometimes we have to "" a chemical equation to make sure that we	
mean to Balance	have the number of of each element on sides of	
a Chemical	the equation. To do this, we change the number of by changing the	
Equation?	(NEVER THE!!!) until we have the same	
	number of atoms of each on both sides. When we do this, we are	
	saying how many of each substance must be before	
	the reaction will (remember: this is not something scientists	
	made up; this is how the reactions happen in!).	
How do I know	Check the number of of each element on both sides of the equation	
if a Chemical	(reactants and products).	
Equation is	If the number of atoms of each element is the on both sides, then	
Balanced?	the equation is balanced.	
	• Example:	
	$H_2 + O_2 \rightarrow H_2O :$	
	$2H_2 + O_2 \rightarrow 2H_2O$:	